

Design of Interplanetary Trajectories for Uranus Probe and Orbiter Mission Including <u>Two-Planet Saturn-Uranus Opportunity</u>

10000 `

8000

6000

2100

1950 ≥

1800 ਵ੍ਹ

Delivered

Mass, mt

SLS Block 1B

Delivered Mass (ka

Atlas V 551

400 600 800 1000 1200 1400

9/12/2034

4/20/2038

14.8 3/19/2040

Delivered Mass (kg)

TOF, yr

Kyle M. Hughes,^{1,2} Sarag J. Saikia,¹ David A. Minton,³ James M. Longuski,¹ Parul Agrawal,⁴ Helen H. Hwang,⁴ Gary A. Allen Jr.,⁴ and Ethiraj Venkatapathy⁴

¹School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907, ²kylehughes@purdue.edu

Microwave

[VLA]

Thermal IR[VLT]

Images of Uranus from Arridge et al.4

Near IR[Keck]

[Voyager2]

Atlas V 551

1000

4200

3600

3000 ء

2400 🖺

1800

1200

³Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, ⁴NASA Ames Research Center, Moffett Field, CA 9435

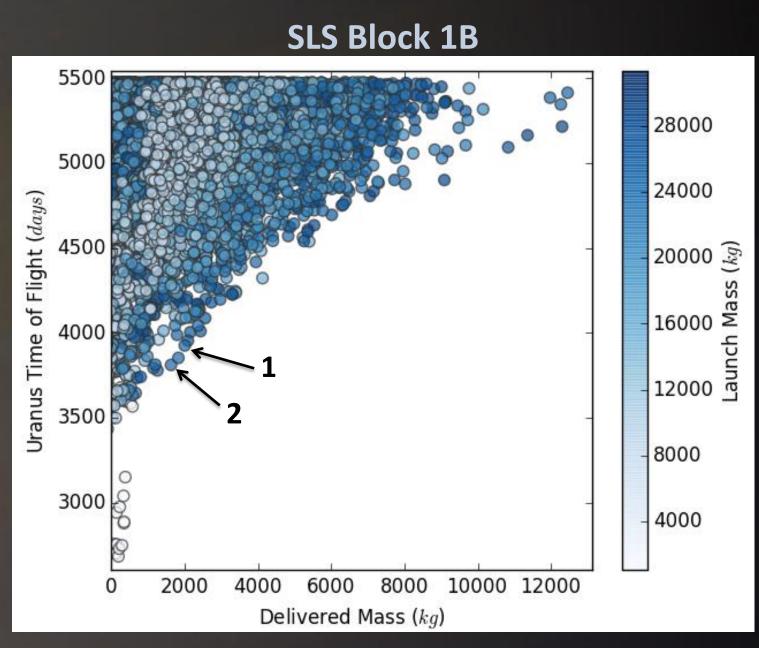
URANUS—AN ICE-GIANT PLANET

- Ice Giants have less H and He, and more "ices" (H₂O, NH₃, CH₄, etc.)
- Majority of observed exoplanets are ice-giants¹
- Humankind's last encounter with Uranus was Voyager 2 in 1986²
- One of the great remaining unknowns of the Solar System³

WHY A MISSION TO URANUS?

Uranus has unique features:³

- 1. Atmospheric dynamics due to extreme axial tilt
- 2. Unusual magnetosphere geometry
- 3. Unexplained energy balance
- 4. Dynamically evolving rings and moons


OBJECTIVE OF STUDY

Identify trajectories to Uranus with launch dates from 2023 to 2028, and potentially aid mission concept studies for the next Decadal Survey.

TRAJECTORIES TO URANUS

- 17 gravity-assist combinations considered
- Trajectories searched in 5-day increments
- Patched-conic model employed
- Delivered-mass estimated using SLS and Atlas V
- Jupiter in poor alignment for gravity assist

0 = Maneuver, E = Earth, V = Venus, U = Uranus

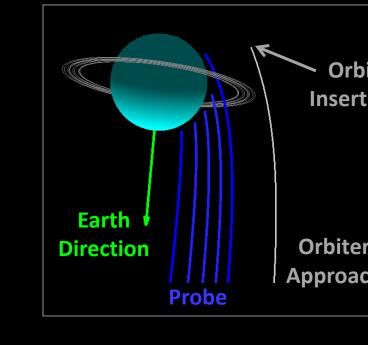
TWO-PLANET SATURN-URANUS OPPORTUNITIES

A Saturn-Uranus mission permits:

- Sending first probe to Saturn, and first probe-orbiter to Uranus
- An opportune arrival time for Uranus atmospheric science
- Identical probe design for both planets

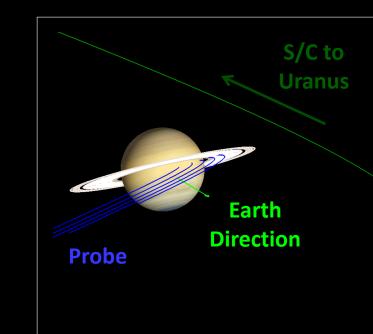
Why probe Saturn?

- To determine:³Noble gas abundances
- Isotopic ratios of H, C, N, and O
- Atmospheric structure (pres., temp., and density)


Saturn-Uranus Trajectory

Launch May 6, 2023

A rare opportunity—Saturn-Uranus


alignment only repeats every 45 years

Uranus Arrival

September 12, 2034 $TOF_{E-U} = 11.4 \text{ years}$ $TOF_{S-U} = 4.8 \text{ years}$ $V_{\infty} = 10.7 \text{ km/s}$ $V_{entry} = 23.0 \text{ km/s}$

Saturn Flyby

November 28, 2029 $TOF_{E-S} = 6.6 \text{ years}$ $V_{\infty} = 8.7 \text{ km/s}$ $V_{entry} = 36.2 \text{ km/s}$

LOCUS OF APPROACH TRAJECTORIES

0E0SU (SLS) 6/19/2026

(Atlas V 551)

Launch

Date

6/4/2025

0 = Maneuver, E = Earth, S = Saturn, U = Uranus

Minimum Inclination Earth

Minimum Inclination

| Sarth Direction | Sarth

Family of approach trajectories for various entry flight path angles, latitudes, azimuths, etc.

FUTURE OUTLOOK

A significant amount of follow-on work will explore details resulting from this preliminary trajectory design study. Some of these tasks have already been identified, namely:

- Investigate uniqueness of Saturn-Uranus, two-planet mission opportunity
- Compute optimal trajectories (including maneuver locations) for maximum delivered mass
- Investigate several key trajectories in higher fidelity (including Saturn-Uranus opportunity)
- Develop high-fidelity entry analysis for probes at Saturn and Uranus
- Investigate optimal, gravity-assist, low-thrust trajectories to Uranus
- Compare Atlas V vs SLS opportunities including assessment of cost and science return

ACKNOWLEDGMENT The authors would like to thank Mr. Alec Mudek for his support in this work.

REFERENCES ¹Batalha, N. M., et al. (2013) The Astrophysical Journal Supplement Series, 204(2), 24. ²Bergstralh, J. T., et al., (ed.) (1991) Uranus. University of Arizona Press, Tucson, AZ. ³Squyres, S. et al. (2011), Vision and Voyages for Planetary Science in the Decade 2013–2022, National Academies Press. ⁴Arridge, C. S., et al. (2012) Experimental Astronomy, 33(2-3), 753-791.